
A -.. A2)71 69l1 T Form ApprovedD~ ~i I MJ I TON PAGE j MB No. 0704-0788Hill Ii H liii IiIi ii U lla er'.e I "our cier resoorns. tnciudir tr'e timre ic- revie-nq ins~it rw 1 ~errg ex.stori cata sour~es
ctne collection of information Sena comments re iarm ng this bu.rae; ensv Se"'t'oma Oan w Other awedt Ot In$

t-' /Vasitntofl meadauarters Services, Diretorate for information QoeratorandP Rtecorts. 12 IS jefersoni
t Managem~ent and Budget, Paderworm Reduction ProieclfO(704-088S). Wasmncron. &C 2050 3

4. TITLE AND SUBTITLE aur 9]mmrnu 5. FUNDING NUMBERS

Some Extensions of the K-Means Algorithm for Image N01-1J17
Segmentation and Pattern Classification N00014-92-J-1879

N00014-91-J-4038
6. AUTHOR(S) .ASC-921 7041

Jose L. Marroquin and Federico Girosi NIH 2-S07-RR07047

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Artificial Intelligence LaboratoryREOTNMR
545 Technology Square AIM 1390
Cambridge, Massachusetts 02139

g. SPONSORING/ MONITORING AGENCY NAME(S) AND AD 9"rj 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Information systems $
Arlington, Virginia 22217 ~

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words) --
In this paper we present some extensions to the k-means algorithm for vector quantization
that permit its efficient use in image segmentation and pattern classification tasks. It
is shown that by introducing state variables that correspond to certain statistics of the
dynamic behavior of the algorithm, it is possible to find the representative centers of
the lower dimensional manifolds that define the boundaries between classes, for clouds of
multi-dimensional, multi-class data; this permits one, for example, to find class boundaries
directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers
for pattern classification (e.g., with local Gaussian classifiers). The same state variables
can be used to define algorithms for determining adaptively the optimal number of centers
for clouds of data with space-varying density. Some examples of the application of these
extensions are also given.

14. SUBJECT TERMS15 LV3ROPAE

K-means vector quantization classification 216.PIECD
clustering segmentation 1.PIECD

17. SECURITY CLASS.F:CATIO" 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

UNLASFIDUNLASFIDUNCLASSIFIED UNCLASSIFIED
NSIN 7540-01-280-550c Stanoarc ;orr,. 298 (Rev 2-89



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1390 January, 1993

C.B.C.L. Paper No. 079

Some Extensions of the K-Means Algorithm for
Image Segmentation and Pattern Classification

Jose L. Marroquin and Federico Girosi

Abstract

In this paper we present some extensions to the k-means algorithm for vector quantization
that permit its efficient use in image segmentation and pattern classification tasks. It
is shown that by introducing state variables that correspor . to certain statistics of the
dynamic behavior of the algorithm, it is possible to find the representative centers of
the lower dimensional manifolds that define the boundaries between classes, for clouds of
multi-dimensional, multi-class data; this permits one, for example, to find class boundaries
directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers
for pattern classification (e.g., with local Gaussian classifiers). The same state variables 0
can be used to define algorithms for determining adaptively the optimal number of centers-----
for clouds of data with space-varying density. Some examples of the application of these
extensions are also given. By ..........

Dist, ibution I
Z " " •7 .' < • ,.- Availability Codes

Avail and/or
Dist Special

Copyright @ Massachusetts Institute of Technology, 1993

This report describes research done within CIMAT (Guanajuato, Mexico), the Center for Biological and Computa-
tional Learning in the Department of Brain and Cognitive Sciences, and at the Artificial Intelligence Laboratory. This
research is sponsored by grants from the Office of Naval Research under contracts N00014-91-J-1270 and N00014-
92-J-1879, by a grant from the National Science Foundation under contract ASC-9217041; and by a grant from the
National Institutes of Health under contract NIH 2-S07-RR07047. Additional support is provided by the North
Atlantic Treaty Organization, ATR Audio and Visual Perception Research Laboratories, Mitsubishi Electric Corpo-
ration, Sumitomo Metal Industries, and Siemens AG. Support for the A.I. Laboratory's artificial intelligence research
is provided by ONR contract N00014-91-J-4038. J.L. Marroquin was supported in part by a grant from the Consejo
Nacional de Ciencia y Tecnologia, Mexico.

93-23910
943- 10 8 0 8 9



1 Introduction version of this scheme which is more amenable to formal
analysis.

Finding a set of representative vectors for clouds of A straightforward generalization of this technique
multi-dimensional data is an important issue in data may be also used for classification purposes [15]: if
compression [9], signal coding [9, 8], pattern classifica- one is given for each data point zi an associated class
tion [5] and function approximation tasks [22, 24]. These C(z,) E {c1 .... -cL , one may find MA optimal centers
centers are said to be representative in the following for each class j : {mjkj = 1,... ,L,k = 1, ... ,M)
sense: given a set of N points in D-dimensional Eu- using:
clidean space, X = {zi,i = 1.... N), a set of M cen-
ters {mi, . .. ,mM), mk E RD,k = 1....M, partitions
X into M sets {S 1 ,.. . ,SM) , where each set Sk corre- 1% i) = + at(zi - (ý'), (4)
sponds to those points in X inside the Voronoi polytope 3 = +

[81 of center Mk: if zi E S() and C(z.) =j

= mk), otherwise
St= {z, : liz. - mkll <lIIz.- mll,j # k} where S(',) is the set of data points inside the Voronoi

where 11 11 is the Euclidean norm. The set of centers is of mn). This procedure is similar to the LVQ1
optimal with respect to this norm, if they minimize the polytope
error measure: classification method [15] (except that in that case,

one introduces a repulsion term from those points with
C(zi) # j that are inside Sik to push the centers away

1 M from the decision boundaries) and is equivalent to the
£(m) = - • Z [lri - mkII 2 = (1) use of update rule (3) for each class in a decoupled fash-

k=1 .ESh ion. After convergence, a specimen y will be assigned to

1 N M class j if for some k ,

=2 j lzi - mkl 2 1s•(z,) 11Y - mikdI < Iiy - maiI1 for all 1, ni---- k ----

where ls(-) is the indicator function of set S. Although this technique will work in general, it has

A widely used technique for finding a locally optimal a relatively low efficiency, since most of the centers are

set of M centers is the k-means algmrithm [18]: one starts irrelevant for the classification task: only those that are
with of ranom centers cothe-nsflgurationm() w h oe stas close to the inter-class boundaries will play an effective
with a random center configuration m(r) which is then role. In fact, we will show how to build more efficient
updated using the rule: classifiers by finding centers that are representative of

the set of class boundaries instead of the set of class
( i =l zils.t)(zI) interion.M (2) interior points. This will be discussed in the following

mk ~ -N() section.t L= i l so(z,) Another modification of the basic procedure (3) allows

where one to give a neighborhood structure to the set of centers.
Thus, Kohonen's Self Organizing Maps [15] show how a

1 or 2-dimensional lattice structure may be imposed to
k = {zm : liz- mk)I < 0z- m), • k} the set of centers, and how this structure may, in many

cases, reflect the internal organization of the data. If the
It has been shown [1, 17] that this algorithm in fact neighborhoods of each center mk at time t are defined
converges to a local minimum of (2). For our purposes, as sets of centers Nk(t) that satisfy:
however, it is more convenient to use a different form of
this algorithm, in which each data point is used in turn M E N1 (t)

to update the corresponding center location [15]. If at k k

time t point zi is selected, we put: ) Nk(t)

"l Mwe get the following modified update equations:
= )+at(z,- t)) if i E St) (3)

= m(), otherwise mi+ (lk + a,(z) - (to)), if z, E S.j' (5)

where {at} is a non-increasing sequence of scalars. This = m- k + at(z, - m(t))h(llm(') - (t il),
scheme, which we will call the Local K-means Algorithm if:, E Sý'), j 9 k, and mn E N,(t)
(LKMA) has the obvious advantage of being able to op-
erate in a dynamic environment, where data are contin- m(t), otherwise
uously arriving. It also allows for generalizations that

produce a "self-organizing" behavior of the centers (see where h(.) is a decreasing function. In Kohonen's work,
below). However, if the spatial distribution of the data the neighborhoods {Nk(t)) are initially very large and
is non-uniform (i.e., if the data are clustered) its perfor- shrink slowly to their final desired size (e.g., a nearest
mance may be poor. In section 2 we present an extended I neighbor structure).



This scheme suffers from some limitations: in the first A standard gradient descent procedure for nininuzing
place, it is difficult to waalyze (excepL I", sue particular .O would therefore take the form:
cases [25]), and thus to understand its performance in a
precise way; besides, the neighborhood structure is im- (1+1) ) -
posed rather than found from the data (although some M = 711- a, 2(in(') - x,)VV,' (9)
modifications have been proposed to this end [21]), which ,=1
limits its usefulness in unsupervised clustering tasks. for some sequence {a,} converging to zero. However. it

The above considerations provide the motivation for is often more convenient to adopt a stochastic gradient
the present work: it is our purpose to extend the LKMA descent algorithm for minimizing F,, that is equivalent
so that some of its limitations are overcome; specifically, to approximatir.g, at each step, the sum on the right side
we will propose extended versions of the algorithm that: of eq. (9) with just one term, randomly drawn among

the N terms. In formula:
i) Allow for a rigorous analysis of its convergence

properties.-(t+i) = mM a,(MM - W (10)
ii) Work well for clustered data. M c)(i

where {•t } is a sequence of random variables which take

iii) Will, if desired, find the centers of the inter-class values on { 1, 2,. .. , N}. This minimization technique is
boundary set. especially convenient when the data points z, come one

iv) Adapt the number of centers to the local spatial at a time, and it has been extensively used by the neural
density of the data. network community, as a part of the so called "back-

propagation" procedure for neural networks training. In
v) Find the "natural" neighborhood structure for the the limit as # - oc, (10) becomes prc..isy the LKMA

cpe",rs of a data set (i.e., may be used for unsu- (3). The convergence of (10) to a local minimum of F,
pervised clustering). follows from the following lemma (the proof is given in

The plan of the presentation is as follows: in sec- the appendix; see also [28] for closely related results):
tion 2, we introduce a family of algorithms that include Lemma 2.1 Let F(y) : Rk ý- R be of the form:
the LKMA as a limiting case, and give a general con-
vergence theorem for this class; also in this section, we I N

present some basic extensions and generalizations needed F(y) = fo(y) + -fMy)
for finding the centers of the inter-class boundary set, Ni=1
and for adapting the number of centers to the data den- where fi are differentiable functions whose gradient is
sity. In section 3 we give examples of the application bounded and satisfies the following Lipschiz condition:
of the extended scheme, specifically, to image segmenta-
tion and pattern classification, and finally, in section 4,
we present some conclusions and open problems. IlVfi(y) - Vfi(y')Il _I MlIy - y'll i = 0,..., N

2 Extended Local K-Means Algorithms for some positive number M. Let {yn} be the sequence

First, we will introduce a generalization of the LKMA
that will help us to understand its convergence proper-
ties. Consider again a set X = {z 1 ,...,XN} of points where {it} is a sequence of random variables that take
in R D, a set of centers {mI, . MM, and the weighted values in {1,...,N} with uniform probability distribu-
error measure: tion, {an} is a sequence of scalars satisfying:

N M COo 00

&,()=~Z~lz klIw (6 Za, oo and<0
i=1 k=l i=1 i=i

where and {%} is a sequence of random variables that is
exp[-01, - Mk 11

2] (7) bounded and converges to zero with probability one. As-
[ (7) sume that {y,} is bounded and that S is a locally asymp-

w -1=1 exp[-/3[z1 - mill2] totically stable point of the ordinary differential equation:

It is clear that the error measure (2) may be obtained
as the limit of (6) as / -. oo. Now, Co is differentiable, y = -VF (12)
and its gradient with respect to mk is given by: with domain of attraction As. Then, if Yn E G for all

N n, for some compact domain G C As, {y,, converges to
S with probability one.

k ( To satisfy the conditions of the lemma, the sequence

where tat) in (10) must be chosen appropriately. One possible
choice is, for example,

O w= (1 -O(W',I1z, _- m1ll 2-_1_, _ Md12))
2 at = lit .



2.1 Soft Winner-Takes-All K-Means collapse, they will remain in that state regardless of an

Algorithm (10) may be understood as a "soft" version of increased 0 (if they are updated in parallel). This may

the WTA scheme that implements (2): if 0 is relatively be accomplished by adding a #-dependent random corn-

small, when a new data point arrives, it will update the ponent to the update equation:
position of not only the closest center, but of others that
are close by as well. (t+i)= + at(z - ('))+.-r(t) (15)

A similar result may be obtained by using, instead of MmkMk+)

(6), an information-related distorsion measure [2]: if i E S(')
k1N • (0•ohews

4(m)=-l~log I exp[-81lz1 - mk (13) m otherwise

i=1 Lkl I where r(t) is a uniformly distributed unit D-vector and

This error measure also corresponds to the log likelihood ( is a small number (the convergence of this modified
function of a Gaussian mixture model for the data dis- scheme also follows from lemma 1). The relative per-
tribution [10] [23], where: the means of the Gaussians formance of this scheme, compared with the standard
correspond to the center locations; the proportions are LKMA is illustrated in figure 2.
all equal to I/N, and all the covariance matrices are
equal to •-L. Figure 2 around here

In this case, the corresponding stochastic gradient de-
scent equation takes the form:

2.2 State-Augmented LKMA
(t+) - at(m0) - zC,)w•, (14) Another way of improving the performance of the stan-

where w6 is given by (7). In the limit as 6 - oo both dard LKMA, is to include in the state of each proces-
(10) and (14) give the same WTA update equation; their sor (center) statistics about its past dynamic behavior.

experimental behavior is also very similar. Specifically, one may keep track of the number of times
These schemes are also related to the self-organizing it has "won" over the other processors:

maps (5), except that in this case the neighborhood of
each center is not predetermined, but rather, it varies hk(t) = E l,( , ) (16)
dynamically as the iterations proceed: the relative val-
ues of the weights {W#} for each i are related to the where i(t) is the index of the data point selected at timeinstantaneous neighborhood structure of the centers; wemay define the instantaneous link status of centers j and t, and (ink, hk) is the augmented state of processor k.mas: d tFor multi-class data, one may use specific centers forkc as: each class, and include, for each one of them, another

=N state variable h that counts the number of times the
4'W- E W'i k class-specific processor has "won" with a data point be-

i=1 longing to its class. Thus, if mik is the kth center for
and the "natural" neighborhood structure for a given class j, one has:

data set by the average 1jk of ik) over all i: two centers
t(j,k) may be considered neighbors if 1ik > 0, for some 4(

appropriate threshold 0 (a similar, although computa- k(t) E ls(,) (17)
tionally more expensive scheme may be found in [21]). =1I
Figure 1 shows this natural neighborhood structure for where C(zi) is the class to which zi belongs and 6(.) is
several two-dimensional data sets. As one can see, it the standard Kroneker delta function.
represents adequately the inner structure of the data, We will now indicate how to modify the update rule,
and so, it may be used for unsupervised clustering tasks. so that this information is taken into account.

Figure 1 around here 2.2.1 Adaptive Number of Centers
This augmented state information may be used for

This soft-WTA algorithm may also be useful for im- adapting the number of centers to the local density of
proving the performance of the LKMA with clustered the data points. This may be accomplished by updating
data. To this end, one may use a time-varying O, rather the center configuration after each full sweep over the
than a constant one: starting with a relatively small data set (or after a sufficiently large number of data has
value ensures that every center will be attracted to some come in), supressing those centers that have won very
data cluster, regardless of its (random) initial position; few times, and splitting those that have won too many
the value of ft may then be increased to obtain a fi- times. Specifically:
nal configuration that minimizes the non-weighted cost For each center k:
function (2). One has to be careful, however, when work-
ing with small values of P, so that the center positions
are kept different from each other, since if two centers if hA < OiN, supress the center. (18)



else iu hk > O.N, generate a new center at a loca- class, so that at all t,
hion corresponding to one the data points inside the 0
current Voronot polytope of center k. h(

where 0,.0, E [0, 1] are two suitably chosen thresholds The boundary-finding update rule may thus take the
such that (0, - O,)N > 1. Note that this choice for form:
the location of the new centers is necessary to ensure
convergence (see below); in practice, however, one may
simply locate them at mk + er where r is a random unit Mk - + at(zi - mW) (19)
vector, and ( a positive number small enough, so that
the new center is attracted by at least one data point if k. E S~tf and k • Ih(')inside S•.= ()insde k.= M (O) , otherw ise

If the total number of centers change after a sweep, o
one should reset h, to zero for all k, and at to atN, and where zi is the data point chosen at time t.
effect a new sweep until the number of centers stabilize. It is clear that with this rule we will have, at any time

It is not difficult to show the convergence of (18) when t, I hI4) - 20) 1_• 1, so that there will be approximately
the lower threshold Oi is set to 0: in this case, one starts the same number of data points belonging to each class
with one processor (center) and successively generate inside the Voronoi polytope of each center, provided that
new ones until the Voronoi polytopes corresponding to the data density is uniform. In this case, upon conver-
all centers contain less than ON data points. Since in gence, every center k will be located at about the mid-
this case the number of centers increases monotonically point of the centroids of the sets {CO n Sk } and {C1 n Sk)
and it is bounded above, (e.g., by the total number of where C,, is the set of data points of class n.
data points), it will necessarily converge to a fixed num- To see why this is true, note that whey the update
ber M*. rule (20) reaches its steady state, we must havc LL.

0, is a free parameter that controls the expected av-
erage number of points per center, while Oi controls the 2

variance of this number (a small variance is obtained if E[(zi - mk)] = L E (Xi - mO)PW(i, c) = 0
(0, - O) is small). The fact that one has control over C=1 :,ESk

the variance means that one can generate more uniform where Pk(i, c) is the probability of selecting an example
center distributions with this method than with the stan- i that is in Sk and belongs to class c and E[.] denotes
dard k-means scheme. This, in turn, will usually improve the expected value. Now,
significantly the performance of other procedures that
may use these centers, for example, for vector quantiza-
tion or for function approximation (see section 3). Pt(i, c) = Pr(select i i E C, n Sk) Pr(select C,) R

In practice, it is convenient to set the lower thresh- 1 1
old to a positive value to prevent centers to be attracted C. ] "S "
to single outlier data points, as well as the existence of
centers with empty Voronoi polytopes (which may hap- where I C, n Sk I denotes the number of points of class
pen due to random initialization, if one starts with more c inside Sk, so that
than one center). Note, however that convergence can-
not be guaranteed in this case; consider the following 1k- 2 1
example: suppose we have N = 7 data points; NO, = 5 i k E - E ->S Z[
and NO, = 4. It is clear that the number of centers c=I iEcenSh

generated by (18) will always oscillate between 1 and 2. It is in this sense that one may say that the centers
This kind of pathological situations are unlikely to are representative samples of the inter-class boundary

occur in practice though, specially if (0, - 0,) is large set.
enough (say, if 0, > 306). A practical way of ensuring This procedure may be generalized to Q > 2 classes,
convergence in any case is to let 6i go to zero after a by sampling, for each class {1,... , Q - I), the boundary
fixed number of iterations. between itself and all the other classes. This however, is

not very efficient, since many parts of the boundary will
2.2.2 Boundary Finders be sampled several times. A more economical sampling

In the case of multi-class data, the augmented state may be obtained by defining the sets:

may be used to find the inter-class boundaries directly T=k
from sparse data.

Let us assume that we have class-specific centers for T1 = Ck+l U Ck+2 U ... C.
classes 1 through M - 1. Consider the 2-class case first: for k = I, ... Q - 1, and finding, for each k, the centers
the augmented state will contain, for each center k, the {mk,1, . ,m&, kM. ) that sample the boundary between the
vector (ink, hk, hýIk) (we only have one type of centers sets To' and Tk using algorithm (20).
in this case). The idea is to constrain the update rule It is of course possible (and desirable) to combine this
so that a center position is updated approximately the procedure with the one for finding the number of centers
same number of times by data points belonging to each in an adaptive way. Figure 3 shows the performance of



this combined scheme for binary-class data in 2 dimen- that minimizes the error criterion (6). i.e., as the Max-
sions. Other examples of applications of this algorithm imum a Posteriori (MAP) estimator of a Gibbsian field
are presented in section 3. with posterior energy given by:

I
Figure 3 around here Up(m) = ý 1 E Ilzi - mkL12wf, + A E Vc(m) (21)

i k C

2.3 Arbitrary Neighborhood Structures and where A is a positive, real parameter.
Smoothness Constraints If the potential functions are differentiable, the fol-

(equation (5)) Kohonen's mod- lowing update rule will converge to a local minimum of
We presented in section I(qain5) one'md- (21):
ification to the LKMA, which produces "self-organizing
maps" between the data points and the centers, that
is, center configurations with a prescribed neighborhood ( a Vc.(m())1
structure. These maps are interesting because they pro- mk - mk +at (Xi- Mk -) k AMO)i

vide a model for the topology-preserving mappings that ClEC Mk

are known to exist between sensory inputs and the brain (22)
cortex (6, 14]. for an appropriate choice of the sequence {at} (see

Kohonen's algorithm, however, presents a number of lemma 1).
problems: firstly, it is difficult to analyze (its convergence Note that in the particular case of cliques of size 2,

and the properties of its fixed points have not been es- and quadratic potentials of the form:
tablished in the general case); secondly, its experimental Vjk(M) = JJmj - Mkll'
rate of convergence is usually very slow, and finally, it is
not clear how to extend it to include other desired prop- the posterior energy corresponds to the composite cost
erties of the center configurations (i.e., the requirement function discussed in [2], and the corresponding update
that the centers lie in a smooth curve, etc.). equation, for first order (nearest-neighbor) systems, re-

In this section we will present an alternative algo- duces to the algorithm proposed by Durbin and Mitchi-
rithm for producing organized center structures which son [6] for the development of cortical maps.
can be derived from a Bayesian formulation of the prob- Self-organization of the centers in rectangular lattices
lem, with a Gibbsian prior for the center configurations. may be obtained using second order neighborhoods and
This approach not only permits a cleaner analysis of the cliques of size 3 that correspond to triads of neighboring
algorithm, but also exhibits faster convergence behavior, sites that lie in the same row (or column) of the lattice,
and can be easily generalized to include other properties so that 3 centers belonging to the same clique will not
(e.g., smoothness) of the configurations. contribute to the energy if they lie in a straight line.

The basic idea in this approach is to express the prior If the lattice size is relatively large, however (greater
constraint on the organization of the centers in prob- than about 8 x 8), the system (22) with this type of
abilistic terms, specifically, in the form of a discrete potentials will very often converge to local minima for
Markov Random Field (MRF) model [20, 13, 3, 26, 7], in which the lattice appears "folded" in some way, so that
which the center locations correspond to the state vari- the global order is not properly established (see figure 4).
ables associated with the nodes of a graph whose topol- This can be remedied in two ways: first, it is necessary
ogy is related -but not necessarily identical- to the de- to include potentials that assign high energies to folded
sired neighborhood structure of the centers; in fact this configurations; a simple choice is to assign to cliques of
structure, as well as the smoothness of the locations of 4 sites {i,j, k,1), that lie in the corners of unit squares
the center configurations will depend both on the graph in the lattice, potentials of the form:
topology and on the particular choice of the potential
functions that define the model. -[lrMi - Mill2 - Ilmk - Mill2]2

The prior probability distribution of the center con-4
figuration will thus be of the form: where (i,j), (j, k), (k, 1) and (I, i) are nearest neighbors.

Secondly, it is necessary to define a neighborhood system
w(m) = le-u(m) that spans a wide range of scales, with potentials that

Z increase their relative weights with the scale size. Thus,

where Z is a normalizing constant and the energy U is for example, if mij is the center at row i and column j
of the form: of the lattice, the multi-scale potentials that correspond

U(m) = • Vc(m) to column alignment may take the form:
C

where the sum is taken over the cliques {C} of the cor- v0-k)(m) = Xkll - n -k + 2mij - Mij+kll' (23)
responding neighborhood system and Vc(.) are potential -+

functions that depend only on the values of the state with Ak+I > Ak, for k - 1.... , K.
variables associated with the nodes contained in each
clique.

The optimal center configuration may now be defined
as the most likely one (given the prior MRF structure) 5



Figure 4 around here_

A more efficient way of achieving the same result is to Mktl)- m~+t [(zk-m~ k))-A + atlXc( ik')]
define a "pyramid" of processes that operate from coarse C k*•C

to fine scales, and that increase the number of centers at
each refining step: one may start with a 3 x 3 lattice , if z, E S(') and hI _< h
which after a few iterations of (22) may be refined by
adding intermediate centers whose initial positions cor- = -a, i9Vc(m(2))
respond to the midpoints of existing ones (see figure 5), k nk-t'

and repeat the whole procedure recursively until the de- CIEC

sired number of centers is obtained. Note that with this if zi E St -< I h 2
procedure, the potentials are always of the form (23) a h <2
with k = 1. M , otherwise (24)

Figure 5 around here where zi is the data point chosen at time t.

An example of the performance of this algorithm is

The final configurations obtained in this way (see fig- shown in figure 6. Note that since in the final config-

ure 4-b) are very similar to those obtained with Koho- uration the centers are ordered, this scheme is in fact

nen's algorithm [15] (which also incorporates long range finding the (discrete) boundary curve from sparse data

interactions), but since the neighborhood size remains without interpolating the corresponding surface. In this

fixed, the computational complexity is lower, and since sense, it may be said that this algorithm finds the initial

the new centers are already close to their correct (glob- position, the number of knots and the final configura-

ally ordered) positions, the convergence rate is signifi- tion of a "snake" [12] that approximates the inter-class

cantly faster. boundary.

It is convenient, as in the case of Kohonen's scheme,
to mantain a fixed, relatively large at in (22) until the Figure 6 around here

final number of centers is reached. At this point, the use
of an appropriately decreasing sequence guarantees the
final convergence to a local minimum of (21) (see lemma Figure 7 around here
1). Other examples of the use of this approach will be
given in the next section. With straightforward modifications, this scheme may

be used for finding: multiple closed boundaries (fig. 7-a
3 Applications and 7-c); open curves that go from one border of the

In this section we present some applications that illus- image to another (fig. 7-b and 7-d), etc.

trate the power of the techniques we have developed 3.2 Local Gaussian Classifiers

3.1 Edge Detection from Sparse Data Gaussian Classifiers [5] are a well known class of pro-

Suppose we have a set of sparse data points X - cedures for the segmentation of multi-class, multi-
1,. --- , XN} inside the unit square Q in R', which may dimensional data. The classification procedure for

belong to either one of two classes {0, 1), and suppose each specimen i E Rf involves the computation ofs

there is a closed region A C fQ whose boundary is a quadratic discriminant functions (one for each class)

closed, smooth curve, and such that

C(z) = 1* •z E A Dk = (Z -jk)TEk I(z _ 'k) + log I EI.
for k-1...,Q (25)

(i.e., all the data points in class 1 are inside A). The

problem now is to find a polygonal line (i.e., a sequence where pL is the estimated location of the centroid of

of points {m 1,.... mm}) that lies close to the smooth class k; Ek = [oij is the estimated (n x n) covariance
curve that defines the boundary of A. matrix and i, I is its determinant. The specimen is

This may be achieved by combining the adaptive then assigned to the class with the lowest value of Dk.
boundary-finding scheme of section 2.2.2 with a prior The "learning" phase consists in the computation of p
MRF constraint on the configuration of centers that cor- and E from a set of examples {z,1 , zN} with known
responds to a circular lattice (i.e., a closed polygonal classes {ci,.. . CN:
line). In particular, to every clique of 3 neighboring sites
(ij, k) we associate the potential: Pk= A =.t . ,6(C(zx)k) (26)

V, =k(m) "4 + 2mi -rl 6(C(n/) -k)

(th m n 2m( N Z (C(Zr) - k)
(note that m, and mM are considered neighbors in a F"=- k.#kj (27)
circular lattice). F--=j k(C(-,) - k)

The combined update rule takes the form: 6 so that it takes only one pass through the data.



The performance of this kind of classifiers will be opti- Classifier training error (%) test error /(

mal, of course, only if the actual distribution of the data LGC. 12 processors 11.1 13.7
corresponds to a set of Gaussians centered at the class LGC, 16 processors 10.712.9
centroids; it is possible, however, to extend this idea for NN, 20 hidden units 7.6 18.5
more complex cluster shapes, by approximating the data NN, 40 hidden units 2.7157
distribution for each class with a sum of Gaussian clouds. NN, 50 hidden units 4.7 16.3
In this way, the classification is still done by taking the NN, 80 hidden units 2.5 15.9
minimum of the discriminant functions (25), except that RBF (adap), 38 centers 15.8 1801
now k will be a 2-dimensional index: k = (kl, k2) rep- RBF (adap), 50 centers 15.5 17.32
resenting cluster k2 of class ki, and the minimization RBF (adap), 64 centers 13.1 14.33
should be done over all clusters of all classes. RBF (soft), 64 centers 15.6 16.95

Note that the precise location of the clusters is not RBF (fixed), 64 centers 19.8 21.r2
important, as long as the decision boundary between ad- RBF (adap), 78 centers 16.3 19.4
jacent clusters of different classes is well approximated
by a quadratic hypersurface; in many cases, this will Table 1: Comparison of local Gaussian (LGC) and neu-
happen provided the set of midpoints between the cor- ral network (NN) classifiers on a 5 dimensional example.
responding centroids samples the boundary manifold at
a sufficiently high rate.

This suggests the following strategy for the learning These points may be found using: the k-means algo-
phase of the compound classifier: rithm with a fixed number of centers ("RBF (fixed)"

1: Find a distribution of centers that samples the rows) or the adaptive strategy of section 2.2.1 ("RBF
inter-class boundary manifold using the boundary- (adap)" rows). As one can see, the performance is sig-
finding scheme described in section 2.2.2; nificantly improved in the latter case, due to the fact

that the center distribution is more uniform. A similar
2 : Use the data points inside the Voronoi polytope improvement has been reported if the standard k-means

of each center to learn the parameters of a local algorithm is replaced by the "soft-WTA" version (14)
Gaussian classifier using (26) and (27) (computing [23]. The performance of this scheme is included in the
the centroid parameters only for those classes that rows labeled "RBF (soft)", for comparison.
have representative points inside the polytope). As one can see, the local Gaussian classifier has the

Note that the update rule (20) and the procedure best performance on the test set. The feedforward neu-
for the adaptive determination of the number of centers ral network with 50 hidden units and the RBF network
guarantee that upon convergence, there will be observa- with 50 centers have approximately the same number of
tions for at least two different class clusters inside every parameters as the local Gaussian classifier with 16 pro-
Voronoi polytope. cessors.

The performance of this procedure is exemplified in In order to test the LGC on a set of real data we con-
figure 8, which illustrates a binary classification task for sidered the same task of gender classification that has
2-dimensional data. been considered by Brunelli and Poggio in [4]. Brunelli

We also tested this technique with a classification and Poggio had a data set consisting of 168 digitized pic-
problem in 5 dimensions. Table I compares its perfor- tures of frontal views of people without facial hair, and
mance with other known classifiers (this table is included the task was the classification of the gender. There were
only as an illustration; the experiment was not intended zi male and 21 female subjects in the data set, and 4
to perform a formal comparison test). Note that since pictures per subject. Each picture was represented by
this procedure generates the same number of centers per a 16-dimensional vector of automatically extracted ge-
class (in binary classification problems), its performance ometrical features, and we were provided with a set of
will deteriorate if the data are not evenly distributed 168 such vectors. In their analysis Brunelli and Poggio
among classes. In this case, its performance may be- found that only few of the variables were relevant for the
come worse than that of other classifiers, classification task, and therefore we used only the first

The training data set consisted of 1000 data points 8 entries of each 16-dimensional vector, that included
in the unit 5 dimensional cube [0, 1]'. Of these points, the most relevant variables found by Brunelli and Pog-

were of class 1, and 1 of class 2. Half of the points gio. We did not attempt-to find the best set of variables
of class 1 were inside a 5 dimensional hypersphere of that describes this task. Since the number of training
radius 0.07 and the other half are outside a 5 dimensional examples is small, relative to the dimensionality of the
hypersphere of radius 0.2. The points of class 2 were problem, we used the LGC without the boundary find-
between these 2 hyperspheres. The test set consisted of ing scheme for locating the centers. In order to test the
10000 data points with the same distribution, performances of the LGC we adopted two procedures:

The rows labeled "RBF (adap)", "RBF (soft)" and 1. the data set was randomly split in 4 equal subsets,
"RBF (fixed) " correspond to the classifiers that are ob- 3 of which were used for training and 1 for test-
tained by approximating the indicator function of one ing. This was repeated 10 times and the average
of the classes (say, class 2) with a linear combination training and testing errors computed;
of Gaussians with fixed covariance o'1 (in all cases we
used o = 5.0), and centered at a fixed set of points [22]. 7 2. the leave-one-out procedure described by Brunelli



and Poggio in [4]. example, we are interested in segmenting thi left veii-

In both cases the training and test error were less than tricule of the hearth taken front a left anterior obliqur

57 with 3 centers (3 Gaussians per class), and less than projection. From this viewpoint, the ventricule appear,

8% with one Gaussian per class, as a high intensity "donut" over a dark background isee
figure 9-a). Therefore, it is desirable that the centers
are located uniformly along a closed, smooth curve that

Figure 8 around here is attracted towards the higher intensity region of the
image (note that the quadratic decision surface of each

3.3 Imnage Segmentation local classifier may be an hyperbola, and therefore, it
can adequately segment a region that looks like a band

As a final example, we consider an image segmentation within its domain).
problem that arises in the processing of certain biomed- Since a scintigraphic image is actually representing
ical images: scintigraphic images [11, 19], which are ob- particle counts, we may use update rule (24) directly.
tained by counting the number of radioactive particles considering that at each location xr, there are :(xr) data
that incide on each cell of a receptor array. The goal of points. To get an appropriate behavior for this update
the processing step is to obtain from these measurements rule, however, it is necessary that all the data points are
an estimate of the radioisotope distribution in specific visited in a random order (see lemma I). To obtain this
organs within the human body. condition, it is not enough to visit the sites of the lattice

Particle count and radioisotope concentration are re- randomly; it is also necessary, when, each site i is vis-
lated by the Poisson distribution formula; therefore, the ited, to "flip a coin", and only update the corresponding
processing step consists in the restoration of a piecewise center location with probability Pupd.,, = Z(x1)/-man,
smooth function corrupted by Poisson noise. If it were where Zmaz = maxi z(ri).
possible to find the boundaries of the organ in question
(e.g., the heart), the problem would reduce tc filtering a Figure 9 around here
smooth function within a given domain, for which effec-
tive methods are available (for example, Bayesian esti- The results of this procedure applied to the real scinti-
mation methods with MRF priors and quadratic poten- graphic image of figure 9-a are shown in figure 9-b.
tials to model the smoothness constraint [20]). In the The white squares indicate the center locations, and the
example that we give here, we show that it is possible white line the final compound decision boundary. The
to adapt the methods that we have presented to classify threshold 6 was obtained as the minimum between the
the pixels of a scintigraphic image of the heart in such two largest peaks of the global histogram of the image; in
a way that one class corresponds approximately to the the experiments we performed, however, we found that
interior of the organ. the final results are not very sensitive to the precise value

To do this, we will use the following concepts: of neither this nor the other parameter (0).
We assume that the two classes are characterized

solely by the intensity level of the image, i.e., the in- 4 Conclusions
terior (class 1) has high intensity with respect to the
background (class 2). It is assumed that the classes are In this paper we have analyzed the local K-Means algo-
fuzzy sets [29] with membership functions of the form: rithm, and have presented some extensions that increase

its range of applicability. Our main contributions are the

1 following:
01(Z) = 1 +exp[-/3(z- e)] (28) i) We have established sufficient conditions for the

convergence of this algorithm to a (local) minimum
0(Z) = I - 01(Z) of a quadratic distorsion measure (lemma 1). In

where 3 and 0 are positive parameters. doing so, we showed that it can be obtained as the

The formulae for the parameters of the discriminant limit (as the parameter 0 becomes large) of a fam-

functions of the local Gaussian classifier c are modified ily of algorithms which are closely related to those

in the obvious way: obtained by minimizing an information distorsion
measure. For moderate values of 0, we showed

l .Ell z) that these algorithms can be used for unsupervised
S= 4k(z(Zr)) (29) learning (clustering) tasks, since they can find a

E•, .kWZO)) neighborhood structure for the centers that reflects
G(c,k) = " y, Zr,, &(z(zr)) ~the structure of the data.

-At. 'kk(z(z,)) - (30) ii) We showed that by varying the parameter 0 and
where the sums are taken over the learning domain of adding a noise term to the update equation, it is
the classifier; X. denotes the coordinates of pixel r of possible to improve significantly the performance
the image, and z(x,) denotes the value of the observed of the algorithm for clustered data.
intensity. iii) We introduced a modification to this algorithm

The learning domain of each local classifier is taken that consists in augmenting the state of each pro-
as before, as the Voronoi polygon of a center that sam- cessor (center) so that it keeps track of its own
pies the image in an appropriate way. In this particular dynamic behavior. With this modification, it is



possible to cortrol the algorithm, so that, for ex- AL: the sequence {yn) is bounded with probability 1.
ample, the centers sample the inter-class bound- A2: h(., .) is a bounded measurable R'-talued func-
ary manifold (for multi-class data) directly. Since tion:
this manifold has one dimension less than the data AS: there are non-negative measurable real-talued
themselves, and it contains the most relevant loca- functions 9(,), g(., -) such that 0(-) is nondecreasing as
tions for classification r -poses, this may represeut its argument increases, 0(u) - 0 as u - 0, 0(-) and
a considerable savi', in computational resources. g(.,-) are bounded on bounded sets and
We also showed thai this augmented state may be
used for other purposes, such as to control the num-
ber of centers in an automatic way. IHh(y, - h(y', )I _< 0(ljy - y'll)g(y, y')

iv) We qhowed that the self-organizing property of cer- A4: there is a continuous function hi(.) such tha I for
tain variations of the LKMA (specifically, Koho- each i > 0 and each y:
nen's self-organizing nets) can be put in a rigor-
ous framework by considering the procedure as a m
Bayesian estimator with a Gibbsian (MRF) prior. lim Pf sup II E Ih(y - h(y)]l } = 0
This formulation has several advantages: firstly, n "> ni=
the algorithm convergence can be rigorously estab- A5: fan}) is a sequence of positive real numbers such
lished, and the properties of the stable states better that an - 0 as n - 0, and a, = o.
understood; secondly, it suggests the use of multi-
scale (pyramid) strategies that accelerate the con- Let S be a locally asymptotically stable point of the ordi-
vergence and conduct the algorithm to better fi- nar differential equation:
nal configurations, and finally, it permits the easy
extension of the algorithm to generate a wide va- h -(y)
riety of organized configurations. Thus, we pre- with domain of attraction As. Then, if y, E G for all
sented an application that consisted in finding the n, for some compact domain G C As, {Yn) converges to
smooth curves that define the inter-class bound- S with probability one.
aries in 2-dimensional segmentation problems from Lemma 2.1 can be derived from theorem (A.1) set-
sparse data. ting {fG} to be a sequence of random variables, with

v) We presented a classification scheme that com- uniform probability distribution, that take values in
bines the power of the Gaussian classifiers with 41,2,3.... ,N} and setting
the boundary-sampling properties of the extended
LKMA, allowing the construction of very complex h(y,t) = -Vfo(y) - Vff(y) , h(y) = -VF(y) .
decision boundaries with very few computational
elements. We exemplified the performance of these Under these conditions we just need to check the validity
Local Gaussian Classifiers, both in "classical" clas- of assumptions A3 and A4 in theorem (A.1).
sification problems and in fuzzy classification tasks A3: If we assume that the fi are differentiable func-
related to image segmentation. tions whose derivatives satisfy a Lipschiz condition, then

Other extensions of great interest are related to the
use of these procedures for the optimal location of centers I1 - VfO(y) - VfM(y) + Vfo(yW) + Vfc(It')I <_ Ml1y - Y'i1
in function approximation problems. This is one of the for some positive number M. Therefore assumption A3
subjects of our current research. holds, with 0(u) = u and g(y) = M.

A Convergence of Stochastic Gradient YA4: We have to prove that for each ( > 0 and for each

Descent
m

In this appendix we prove that, under certain assump- lim P4 sup II adI-Vfo - Vf, + VF]II E ) - 0
tions, a class of stochastic gradient descent techniques, n--oc M>, i=
that include "backpropagation" as a particular case, con- (32)
verges to the same result as the standard gradient de- Defining the random variable
scent algorithm. This fact is stated in lemma 2.1 (see
section 2), which is an application of the following theo- s, = ai[VF - V& - Vfo]
rem [16]: condition (32) asserts that the sequence

Theorem A.1 (Kushner and Clark, 1978) Con- m

sider the following sequence in R": c. = sup II siI

converges in probability. It is sufficient to show that the
where {•n} is a sequence of random variables that do not series F"•=n si converges with probability one (Kushner
depend on the {yn) and f%/) is a sequence of random and Clark, page 32). We use the following theorem by
variables converging to zero. Assume the following: 9 Kolmogorov and Khinchin (see [27], page 359):
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Figure 9. Panel (a) portrays a real scintigraphic image
of a human heart taken from a left anterior oblique pro-
jection. Panel (b) shows the superimposed boundaries
found by the fuzzy LGC described in section 3.3.
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